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I.    INTRODUCTION1 
 

Today’s research and operational forecast models 
and data assimilation systems have difficulty ingesting 
and utilizing large volumes of satellite data, in part due 
to prohibitively large computational costs, time con-
straints and bandwidth issues.  To address this problem, 
NASA recently funded a project aimed at refining, test-
ing and customizing an existing automated Intelligent 
Data Thinning (IDT) algorithm, developed at the Uni-
versity of Alabama in Huntsville (UAH), in conjunction 
with commonly used data assimilation systems for nu-
merical weather prediction models. The most signifi-
cant measure of a successful data reduction algorithm is 
its ability to retain valuable information – that which 
has maximum impact on the model forecast – while 
simultaneously reducing the data volume. The IDT al-
gorithm is specifically designed to retain information-
dense regions of a data set while removing redundant 
data.  This recursive simplification algorithm, is based 
on the computer graphics concept of data decimation, 
retains data within regions of high spatial frequency 
(large variances), while subsampling regions of low 
spatial frequency (low variances) to thin the data.  

The goal of this project is to test, refine and cus-
tomize the existing IDT algorithm in order to transition 
it into a deliverable data reduction tool useful for real-
time applications with a wide variety of dense NASA 
satellite data streams in operational, research, and pri-
vate industry communities.  Here, we present results 
from sensitivity analysis on IDT with selected synthetic 
data sets and various assimilation methodologies.  

 
II.    DATA THINNING STRATEGIES 
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Two non-trivial approaches to data thinning are 

evaluated: a) the box variance (BV) method, and b) the 
intelligent data thinning (IDT) method. Additionally, a 
simple sub-sampling method is evaluated whereby the 
number of retained observations is systematically var-
ied to one third, one sixth and one ninth of the full set 
of observations. Evaluation was also conducted with 
randomly selected (spatially) sets of observations to 
match similar observation numbers used in the other 
techniques. The evaluation is two-fold and involves 1.) 
observation retention issues for the two thinning meth-
odologies and 2.) an indirect measure of the impact as 
manifest through analyses. Each of the analysis ap-
proaches used here updates a first-guess field with an 
“increment” or correction. This correction consists of a 
weighted combination of innovations (an innovation is 
the difference between the observation and the back-
ground field). The non-trivial data thinning methods 
applied here both rely on variability as a means by 
which to selectively filter the input. In the absence of 
observation or background error it is possible that either 
of the IDT or BV approaches might still retain a signifi-
cant amount of redundant information if applied in ob-
servation space. As a result for comparison purposes, 
the BV and IDT methods are also tested in innovation 
space.  

There is no preferential selection of particular ob-
servations for the sub-sampling methodology, but it is 
straight-forward and computationally efficient and is 
thus commonly used in operational meteorology. In 
reality, some observation values may be more important 
as they provide more information to a data analysis 
system. In part, this motivates the development of tech-
niques that can differentiate between regions of high 
information content and those that contain redundant 
data.  The non-trivial thinning techniques are briefly 
described in the following sections. 



 
A.  Box Variance (BV) Method 

The BV method [1] divides the analysis domain 
into boxes with a prescribed 10×10 grid-space length.  
Each box is marked as containing high information 
content if the variance of the observations (or innova-
tions) is higher than a predetermined, user-defined 
threshold specific to that particular data set. If the vari-
ance is less than the threshold, the observation (or inno-
vation) whose value is closest to the mean value of all 
the data within the box is retained.    However, if the 
variance is greater than the threshold, no thinning oc-
curs within the box (i.e., all observations/innovations 
are retained).  The observation (innovation) variance 
threshold is not fixed in the experiments presented here, 
but rather is selected so as to closely match the number 
of observations retained in the IDT and sub-sampling 
experiments.     
 
B.  Intelligent Data Thinning (IDT) 

A snapshot of the observation (or innovation) val-
ues can be treated as an image with pixel intensities 
equal to the observation values at the corresponding 
grid points. The problem of finding regions of high 
information content thus translates to identifying ‘ab-
normal’ regions in the corresponding image. For a mul-
timodal pixel distribution, pixels that form the tails of 
each mode are most deviant from the mean of all the 
pixels, contribute the most to the cumulative variance 
of the region, and are thus identified for subsampling at 
a higher retention rate.   

For each mode, we compute the statistics of the 
pixels that are close to the mean. These sets of pixels 
are called the background regions and are thinned for a 
low rate of data retention. All other regions in the im-
age are deemed to have high information content and 
are sub sampled at a higher retention rate. The IDT al-
gorithm [2] recursively decomposes the image into a 
tree structure. The root node of the tree is the complete 
image. Each region in level ‘L’ of the tree is decom-
posed into two regions of level ‘L+1’ if it fails the sta-
tistical similarity tests that compare the region with the 
background, thus, recursively splitting the target re-
gions into smaller sub regions while leaving the back-
ground regions intact.  

The statistics involved include the mean and vari-
ance which are computed for the sub-region. Two sta-
tistical similarity tests (F-Test and T-Test) are per-
formed using the computed statistics to check if the 
region is similar to one of the backgrounds. The F-Test 
provides a similarity measure between the variances, 
and the T-Test provides a similarity measure between 
the means. If the region is similar in terms of mean as 
well as variance, we sub-sample the region to retain less 
data. Otherwise, the region is tested for a sub-region of 
interest (i.e. high information content) in order to split 

the region. If the region is large enough, an optimal 
splitting point along the length (X) or height (Y) is 
found, and the region is decomposed into sub regions at 
this point leaving two uniform and differing regions.  
This optimal splitting point is selected at a position that 
reduces the cumulative variance within each region—if 
they are represented by their means—in an approach 
similar to the least-square approximation described by 
Wu [3].  If the region is too small, it cannot be split, so 
it is sub sampled at a higher retention rate. 
 

III.    EXPERIMENT DESIGN 
 
A.  Truth, Background and Observations 

The truth and, background are specified on a 175 x 
175 grid, and observations are randomly located within 
this grid. The truth field (Fig. 1) was chosen to mimic a 
temperature field associated with a heated peninsula or 
warm ocean current whereby two regions of strong gra-
dient separate regions of relatively little temperature 
gradient.  

The synthetic background field was generated such 
that the spatial error correlation statistics were known 
and consistent with theoretical statistical assumptions of 
optimal interpolation. Albeit useful, the degree to which 
our synthetic data experiments mimic the real world 
will depend, in part, on the error covariance statistics 
which are not typically well known. Additionally, the 
experiments performed  here are highly idealized where 

 

 
 
Fig. 1. Truth field. The pseudo temperature distribution is intended to 
replicate a peninsula or ocean current with strong peripheral gradi-
ents.  Temperature contours are 1°C. 
 
we have assumed homogenous, isotropic, and uncorre-
lated observation error.   

The background field was generated following the 
work of [4]. A pseudo-random two-dimensional field of 
perturbations from the truth was prescribed using a 
variance of 1 and decorrelation length of 25 grid points 
(Fig. 2). The perturbation field created with this method 

26°C              30°C               26°C    



has no knowledge of the high temperature gradient re-
gions. These perturbations were then added to a 
smoothed truth field to create the background. As a 
result, this approach produces a background field that 
contains the same error decorrelation in all regions of 
the grid. Although the smoothing of the truth violates 
the assumption of isotropic error, this adjustment does 
not significantly impact the resulting variance and 
decorrelation statistics for the full domain.    

Observations were generated systematically within 
the analysis domain with an observation separation dis-
tance 3 times the length of the analysis grid spacing. 
Spatially uncorrelated error (white noise) was intro-
duced into the observations with a variance of 0.25. 
Various thinning strategies (a total of 6) were applied to 
these sets of observations. Fig. 3 depicts the full set of 
observations along with two of the thinned data sets. 
The BV algorithm was applied to both the observations 
and innovations while the IDT was applied to the ob-
servations only. Innovations were generated by interpo-
lating the background field to the observation locations. 
Both the BV and IDT algorithms respond to variability 
such as that in the gradient regions or that introduced by 
error.  Overall, the number of data points retained in the 
gradient regions is substantially higher. 
 
B.  Analysis Schemes 
Bratseth  

The  Bratseth  analysis is  a successive  corrections 

Fig. 2.  Background field with observational error variance of 1 deg2 
and a decorrelation length of 25 grid points.  
 
scheme that converges to optimal interpolation (OI) 
with sufficient iterations [5]. The iterative approach is 
both computationally feasible and economical com-
pared to the traditional OI and variational approaches, 
[6] and [7]. Similar to the OI approach, the Bratseth 
method requires an estimation of the background and 
observation error covariances. It is assumed that the 
Bratseth method converges when the average difference 

between successive iterations is less than 10-4.  While 
this does not necessarily guarantee convergence to OI, 
it is reasonable to assume that subsequent iterations will 
not significantly improve the analysis.  Using the full 
data, 87 iterations are required for convergence.   

Fig. 3. Observation locations for the full set of observations (gray 
dots), the Box Variance (BV) method conducted on observations (red 
X’s) and the IDT algorithm using observations (blue boxes).  
 

The background and observation error covariance 
are set to 1.0 and 0.25 respectively, and a third parame-
ter, the error decorrelation length scale, is set to 25. 
Although unrealistic (i.e., these parameters, in general, 
are unknown), the values chosen here are in accordance 
with the prescribed errors. 

 
Kriging 

Kriging is an interpolation scheme that originates 
from geostatistics and, like the Bratseth, is comparable 
to OI [8]. The implementation of Kriging used here is 
termed Ordinary Kriging. We chose an exponential 
covariance function (variogram) for modeling the error 
covariance that is consistent with the Bratseth method.  
The Kriging analysis was conducted in two modes: 1) 
without use of a background field (observations only) 
and 2) with use of background field. The Kriging using 
the mode 1 approach was chosen to provide a bench-
mark by which to directly assess the impact of the 
background field on the analyses. 
 
 
Variational 

A two-dimensional variational (2DVAR) analysis 
approach, that uses localization to reduce the size of the 
background error covariance matrix, is applied [9].  The 
background error covariance is modeled using a recur-
sive filter [10]. The variational problem is given by the 
functional J, 
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where x is the analysis variable, xb is the background, B 
and R are the background and observation error covari-
ance matrices respectively, H(x) maps the background 
field to the observation space, and yo is the observation 
vector.  Upon preconditioning, Eq. (1) can be rewritten 
as 
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where Jinc(x) is the incremental change in the analysis 
variable, q is the preconditioned analysis variable, C is 
the preconditioner, and d is the innovation vector. Eq. 
(2) is differentiated with respect to the control (analy-
sis) variables and then minimized through a limited 
memory conjugate gradient algorithm [9]. The error 
covariance for both the background and observations 
are identical to the  Bratseth and Kriging techniques. 
 

IV.  RESULTS 
 
A. Synthetic Data 

Domain Root Mean Square Error (rmse) for the 4 
analysis systems using the full observational data set 
and the 6 filtered data sets are presented in Table 1. As 
expected, Kriging without use of the background field 
produced the highest analysis error in all cases.  The 
2DVAR method produced the lowest rmse in all cases 
and, neglecting the full observation analyses, the lowest 
error (for all methods) is associated with the sub-sample 
3 thinning. The IDT error is comparable (within 0.002).  
Because we are interested in resolving the gradients, the 
rmse is also shown for the gradient region only (Table 
2). Interestingly, 2DVAR performs consistently for all 
thinning methodologies while the Kriging and Bratseth 
analyses are degraded for the sub_6 and sub_9 experi-
ments. Overall, BV_obs (see table caption) performs 
the best (i.e., lowest rmse) for all techniques except 
2DVAR, which yields a slightly larger error than that of 
the BV_ino. It is worth pointing out that, for these ex-
periments, the BV_obs approach retains the greatest 
number of observations within the gradient region (see 
Fig. 3). The difference between the observation and 
innovation thinning is more evident within the gradient 
regions for the BV methods, while in the gradient re-
gions the rmse is higher for all analysis schemes (except 
2DVAR) for the BV_ino experiment. 
 
Observation Retention Issues  

Although the error statistics in the two tables are 
somewhat informative, direct comparison is difficult as 
the error does not take into account the number of ob-
servations. A log/log plot of the rmse versus number of 

observations is shown in Figures 4 and 5 for the full 
domain and gradient regions respectively [11]. These 
diagrams display information in a way that helps assess 
the thinning/analysis quality as a function of computa-
tional expense. As illustrated, the relationship is a 
nonlinear function of the number of observations. The 
desired results (low rmse/low number of observations) 
tend towards the lower left corner of the plot. 

 
Table I 

RMSE (full domain) for the four analysis schemes using full 
data (Full) and 6 different thinning strategies including sub-

sample 3, 6, and 9 (Sub_3, Sub_6, Sub_9), box variance with 
observations and innovations (BV_obs, BV_ino), and IDT with 

observations (IDT_obs). Number of observation retained in 
parentheses. 

 

Method (#obs) Kriging 
NB Kriging Bratseth 2DVAR 

Full  (3364) 0.1042 0.0507 0.0583 0.0481 

Sub_3  (400) 0.1681 0.0890 0.0907 0.0636 

Sub_6  (100) 0.3790 0.2203 0.2196 0.0808 

Sub_9  (49) 0.7635 0.3972 0.3951 0.1015 

BV_obs  (732) 0.2008 0.1315 0.1348 0.0712 

BV_ino  (788) 0.1833 0.1014 0.1042 0.0667 

IDT_obs  (721) 0.1698 0.0938 0.0946 0.0658 

 
 

Table II 
Same as in Table 1 except for gradient region only. 

 

Method (#obs) Kriging 
NB Kriging Bratseth 2DVAR 

Full  (3364) 0.4941 0.2591 0.2909 0.2891 

Sub_3  (400) 0.6791 0.3181 0.3238 0.3325 

Sub_6  (100) 1.1469 0.5382 0.5376 0.3451 

Sub_9  (49) 2.1382 0.8018 0.8083 0.3625 

BV_obs  (732) 0.5258 0.2283 0.2654 0.3167 

BV_ino  (788) 0.6786 0.3250 0.3479 0.3014 

IDT_obs  (721) 0.5490 0.2469 0.2722 0.3048 
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Fig. 4. RMSE for the full domain for Kriging without a background 
field (gray diamonds), Kriging with a background field (black trian-

gles), Bratseth (gray squares), and 2DVAR (red dots). 
 
As discussed previously, for the full domain, the 

2DVAR analyses outperform the other techniques, es-
pecially when the number of observations are signifi-
cantly reduced (Fig. 4). As the number of observations 
retained increases, the discrepancy between the various 
analysis techniques disappears. The Kriging without 
background rmse is actually greater than the back-
ground rmse for some of the thinned experiments (gray 
diamonds). Interestingly, the quality of the 2DVAR 
approach in the gradient region appears to be relatively 
insensitive to variation in the number of observations 
(Fig. 5). These findings suggest that the analysis error is 
both a function of the observational filtering and the 
analysis system.  
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Fig. 5. Same as Figure 4, but for the gradient region only. 

 
 

V. DISCUSSION/FUTURE WORK 
 
Synthetic Data Continued 

Some additional evaluation of the data filtering al-
gorithms using synthetic data remains. It is not clear, 
for example, to what degree the thinning algorithms 

performance is tied to the quality of the background 
field and observations.  Table III depicts an observa-
tion/background quality matrix. Thus far, the observa-
tion thinning appears to be the best approach (with the 
exception of 2DVAR, Table II). However, the combina-
tion of quality observations and a degraded first-guess 
field (the green shaded box, Table III) is biased in favor 
of observation-based thinning. The bias is an artifact of 
smoothing the truth to create the background which 
increases the analysis error in the gradient region (i.e., 
the analysis draws to spurious innovations). As previ-
ously mentioned, the impact of the smoothing on the 
true error statistics is minimal when averaged over the 
entire domain, which indicates that the background 
error characteristics are clearly not homogeneous as 
assumed here. Of particular interest is the opposite con-
figuration, i.e., poor observations and a quality back-
ground field – a combination that should favor innova-
tion space thinning. Additionally, when both the obser-
vations and first-guess are of decent quality, we antici-
pate that the innovation space filtering will be the best 
approach as the innovation variability will be signifi-
cantly less than that of the observations alone.  

Additional synthetic experiments in which the gra- 
dient in the background field is displaced  rather  than 

 
Table III 

Experiment matrix for varying combinations of quality in 
the observations (OBS) and background field (BG).  

 
Good OBS Bad OBS 

quality       BG ? ? 
degraded   BG obs better ? 
 

smoothed (a realistic scenario) and experiments where 
the observation error is correlated will also be per-
formed. 

 
 

Real Data Experiments 
We have begun to apply the thinning algorithms to 

sea surface temperature (SST) from the Moderate-
resolution Imager Spectroradiometer (MODIS) direct 
broadcast. A case with minimal cloud cover has been 
chosen for evaluation (Fig. 6). This work will be ex-
panded to include temperature and water vapor profiles 
derived from the Atmospheric Infrared Sounder (AIRS) 
instrument aboard the Aqua EOS platform.  



 
 
 
 
 
 
 
 
 
 
 
Fig. 6. MODIS-AQUA sea surface temperatures valid 1825 UTC 20 

May 2006. 
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